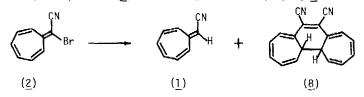

REACTIONS OF 8-BROMO-8-CYANOHEPTAFULVENE Shigeyasu Kuroda and Toyonobu Asao Department of Chemistry, College of General Education, Tohoku University Kawauchi, Sendai 980 Japan Makoto Funamizu, Hiroshi Kurihara and Yoshio Kitahara^{*} Department of Chemistry, Faculty of Science, Tohoku University Aramaki Aoba, Sendai 980 Japan

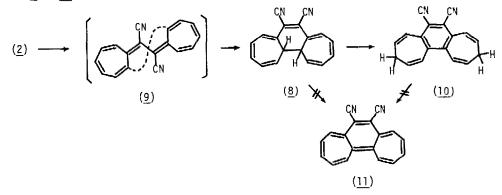
(Received in Japan 6 November 1975; received in UK for publication 16 December 1975)

Studies on the reactions of 8-substituted and 8,8-disubstituted heptafulvenes have revealed that the electrophilic¹ and nucleophilic² substitutions occurred at 8-position and at sevenmembered ring, respectively, halogen added at seven-membered ring under photo-irradiation,³ and cycloaddition with dienophiles, enamines and benzyne occurred at 1,8-position of heptafulvenes⁴

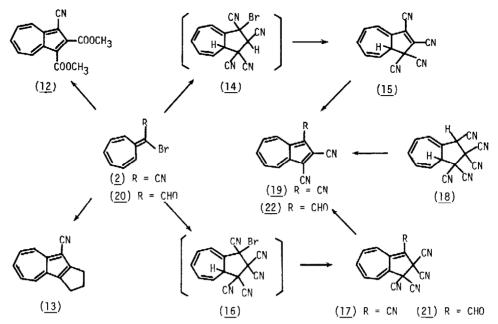
However, reactions of 8-haloheptafulvene having reactive substituents at 8-position have not been studied In the present paper, further preparation of 8-haloheptafulvenes, and nucleophilic, coupling and cycloaddition reactions of 8-bromo-8-cyanoheptafulvene have been studied, the results will be reported herein


The reaction of 8-cyanoheptafulvene $(\underline{1})^5$ with 1 5 equivalents of NBS in methylene chloride at ice cooling temperature for a few minutes afforded unstable known 8-bromo-8-cyanoheptafulvene $(\underline{2})^1$ in 93% yield after a careful chromatographic separation on silica gel under nitrogen atmosphere The reaction of $\underline{1}$ with NCS also gave 8-chloro derivative ($\underline{3}$) as fairly stable crystals in 54% yield Similarly, 8-bromo- and 8-chloro-(2',2'-dicyanovinyl)heptafulvenes ($\underline{5}$ and $\underline{6}$) were obtained from the corresponding heptafulvene ($\underline{4}$)⁶ in the yields of 47 5% and 83 5%, respectively Physical properties of these 8-haloheptafulvenes are shown in Table 1

251

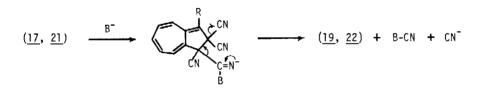

A reaction of 8-bromo-8-cyanoheptafulvene (2) with excess $Cu_2(CN)_2$ in refluxing pyridine gave 8,8-dicyanoheptafulvene (7)⁷ in 9% yield, the reaction is the first example of nucleophilic substitution at theoretically less reactive 8-position of heptafulvenes

Attempted Ullmann coupling of $\underline{2}$ using copper, zinc or zinc-copper in pyridine afforded an unexpected reduction product,⁸ 8-cyanoheptafulvene (<u>1</u>), however, the reaction in dimethylform-amide afforded tricyclic product (<u>8</u>), in 40 5% yield, accompanying <u>1</u>



The mechanism of the formation of $\underline{8}$ can be rationalized as shown below which involves the initial Ullmann coupling of $\underline{2}$ giving $\underline{9}$ followed by a thermal conrotatory electrocyclic reaction, although the intermediate (9) was not isolated 9

Further thermal isomerization of $\underline{8}$ afforded a mixture of sigmatropic rearrangement products mainly consists of the compound (<u>10</u>) However, attempted synthesis of fully conjugated compound (<u>11</u>) from <u>8</u> or <u>10</u> was unsuccessful



Since the reaction of <u>1</u> with dimethyl acetylenedicarboxylate (DAC) or enamines has been reported to give azulenes by [8 + 2] cycloaddition followed by dehydrogenation, 4a,c the similar cycloaddition of <u>2</u> was studied in the expectation to obtain the corresponding azulenes in higher yield by the facile elimination of hydrogen bromide from the initially formed adducts. However, the reaction of <u>2</u> with DAC and cyclopentanonemorpholinoenamine afforded the azulenes (<u>12</u>)⁴ and (<u>13</u>), ⁴ respectively, in lower yield than in the case of 8-cyanoheptafulvene (<u>1</u>), which must be due to instability of <u>2</u> and steric hindrance of bulky bromine atom for the cycloaddition

In the reaction of $\underline{2}$ with tri- and tetracyanoethylene, 1,1,2,3-tetracyano-1,8a-dihydroazulene (<u>15</u>) and 1,1,2,2,3-pentacyano-1,2-dihydroazulene (<u>17</u>) were obtained respectively, after a rapid chromatographic separation on silica gel, which must be formed by the elimination of hydrogen bromide from the initial [8 + 2] cycloadducts (<u>14</u> and <u>16</u>) However, rechromatography of not only <u>15</u> and <u>17</u> but also cycloadduct (<u>18</u>)¹⁰ of <u>1</u> and tetracyanoethylene on silica gel afforded 1,2,3-tricyanoazulene (<u>19</u>)¹¹ although in very low yields. The same reaction also occurred on alumina column. The reaction of 8-bromo-8-formylheptafulvene (<u>20</u>)¹² and tetracyanoethylene afforded an unstable compound (<u>21</u>), mp 203-204°C, whose treatment with silica gel afforded 1,2-dicyano-3-formylazulene (22)¹¹ in 4.7% yield

This unusual decyanogen reaction of 17 and 21 is the first example in our knowledge, and the following mechanism can be tentatively proposed

Comp- ound	Color mp (°C)	Uv λ_{max} nm (log ε) [a]	Nmr 8 ppm (J in Hz) [b]	Molecular ions at m/e
<u>3</u>	red needles 68~69	242(4 09) 354(4 24)	6 32(m, 4H) 6 74(m, 2H)	163, 164
5	reddish purple needles 124–125	273(3 95) 473(4 44)	6.80(m, 6H) 7 70(s, 1H)	258, 260
<u>6</u>	reddish purple needles 146-147	275(3 81) 283(3 78) 477(4 43)	6 75(m, 6H) 7 66(s, 1H)	215, 216
<u>8</u>	reddish orange plates 186-187	240(4 51) 294(4 06) 409(4.31)	2 15(d, J=6 0, 2H) 5.11(d,d, J=6 0, 9 0, 2H) 6 31(m, 2H) 6 95(m, 6H)	256
<u>15</u>	orange solıd		3 85(m, 1H) 5 80(d,d, J= 4 0, 10 0, 1H) 6 53(m, 2H) 7 01(m, 2H)	
<u>17</u>	red needles 200 5	366(4 73) 382 ^{sh} (3 60)	6 85(m, 4H) 7 40(m, 1H)	255

Table 1 Physical properties of the products

[a] in CH₂Cl₂, [b] in CDCl₃ except <u>17</u> (in DMSO-d₆)

References and Footnote

- 1) M Oda and Y Kitahara, Bull Chem Soc Japan, 44, 296 (1971)
- 2) Y Kitahara, K Doi and T Kato, ibid, 39, 2444 (1966)
- 3) M Oda, M Funamizu and Y Kitahara, Chem. & Ind , 75 (1969)
- 4) (a) M Oda, H Tani and Y Kitahara, Chem Commun, 739 (1969), (b) M Oda and Y Kitahara, Bull Chem Soc Japan, 43, 1920 (1970), (c) M Oda and Y Kitahara, Synthesis, 367 (1971), (d) M Oda, Y Kayama and Y Kitahara, Chem Commun, 505 (1971)
- 5) M Oda and Y Kitahara, Chem Commun, 352 (1969)
- 6) C Jutz, Chem Ber, 97, 2050 (1964)
- 7) T Mukai, T Nozoe, K Osaka and N Shishido, Bull Chem Soc Japan, 34, 1384 (1961)
- 8) The similar reductions in case of the Ullmann reaction have often been observed, cf R G R Bacon and H A 0. Hill, Quart Rev , 19, 95 (1965)
- 9) 8,8'-Biheptafulvenyl itself has been synthesized (S Kuroda, M Oda and Y Kitahara, Angew Chem 85, 93 (1973), Angew Chem, intern Ed, 12, 76 (1973)), and the compound is also thermally unstable to give a tricyclic compound, unpublished result
- 10) Y Kitahara and M Oda, "Aromaticity, Pseudo-Aromaticity, Anti-Aromaticity,"The Jerusalem Symposia on Quantum Chem and Biochem, III, p 284, Jerusalem 1971
- 11) S. Kuroda, M. Funamizu, Y. Kitahara and T. Asao, Tetrahedron Letters, 1973 (1975)
- 12) The compound (20) was obtained by the reaction of 8-formylheptafulvene and NBS, but it was quite unstable, therefore, the compound was used for the cycloaddition without complete purification